For a full story on sympathectomy and consequences, look up nerve injury or denervation

"I think the surgeons may not be aware of the long term consequences of denervation" Ahmet Hoke M.D., Ph.D. FRCPC

Professor of Neurology and Neuroscience, Director, Neuromuscular Division Johns Hopkins School of Medicine, Department of Neurology


Monday 27 April 2015

Post-sympathectomy neuralgia is proposed here to be a complex neuropathic and central deafferentation/reafferentation syndrome

The formation of the spinal nerve from the dor...
The formation of the spinal nerve from the dorsal and ventral roots. (Photo credit: Wikipedia)
 1996 Jan;64(1):1-9.

Post-sympathectomy neuralgia: hypotheses on peripheral and central neuronal mechanisms.

Abstract

Post-sympathectomy neuralgia is proposed here to be a complex neuropathic and central deafferentation/reafferentation syndrome dependent on: (a) the transection, during sympathectomy, of paraspinal somatic and visceral afferent axons within the sympathetic trunk; (b) the subsequent cell death of many of the axotomized afferent neurons, resulting in central deafferentation; and (c) the persistent sensitization of spinal nociceptive neurons by painful conditions present prior to sympathectomy. Viscerosomatic convergence, collateral sprouting of afferents, and mechanisms associated with sympathetically maintained pain are all proposed to be important to the development of the syndrome.

Saturday 18 April 2015

Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation


Abstract

Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.